
1

I. INTRODUCTION

We approached our first participation in TREC with an interest in performing retrieval on the out-
put of automatic speech-to-text (speech recognition) systems and a background in performing
topic-labeling on such output. Our primary thrust, therefore, was to participate in the SDR track.
In conformance with the rules, we also participated in the Ad Hoc text-retrieval task, to create a
baseline for comparing our converted topic-labeling system with other approaches to IR and to
assess the effect of speech-transcription errors. A second thrust was to explore rapid prototyping
of an IR system, given the existing topic-labeling software.

 Our IR system makes use of software called Semantic Forests which is based on an algorithm
originally developed for labeling topics in text and transcribed speech (Schone & Nelson,
ICASSP ‘96). Topic-labelling is not an IR task, so Semantic Forests was adapted for use in TREC
over an eight-week period for the Ad Hoc task, with an additional two weeks for SDR. In what
follows, we describe our system as well as experiments, timings, results, and future directions
with these techniques.

II. GENERAL SYSTEM OVERVIEW

In order to do database designing and then querying, our overall system required a number of
steps, as illustrated in Fig. 1. The preliminary steps, shown as the first three blocks in the figure,
involve preparing the data for use with our topic-labelling software, Semantic Forests. Since
Semantic Forests has not been specifically tailored for SGML applications, each database docu-
ment needed first to be filtered to select out only the <TEXT> portion of each database message
and then formatted for processing. Subsequently, all the words in a file which are spellings of
numbers were converted to their numeric value (such as “seven” becoming “7”). For the Ad Hoc
task, most numbers were already converted, so this stage was eliminated, although it was used for
the SDR task. The second preparatory stage was to transform multiword units into single tokens
(e.g., “United States” becomes “united_states”). The list of multiwords used for this process was
derived both by hand, as well as from frequencies and document frequencies of commonly occur-
ring tuples. The output from this word-joining software became the input into the main engine of
Semantic Forests.

Text Retrieval via Semantic Forests
Patrick Schone, Jeffrey L. Townsend, Thomas H. Crystal*, and Calvin Olano

U.S. Department of Defense
Speech Research Branch

Ft. George G. Meade, MD 20755-6000

*T.H.Crystal is an integree from the IDA Center for Communications Research, Princeton, NJ.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
NOV 1997 2. REPORT TYPE

3. DATES COVERED
 19-11-1997 to 21-11-1997

4. TITLE AND SUBTITLE
Text Retrieval via Semantic Forests

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Defense,Speech Research Branch,Ft. George G.
Meade,MD,20755-6000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Sixth Text Retrieval Conference (TREC-6), Gaithersburg, MD, November 19-21, 1997

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

 Semantic Forests is conceptually simple. Greater detail about the algorithm will be given
later. Yet suffice it for now to say that Semantic Forests reads in every word of a document, finds
that word (or its stem) in an electronic dictionary, builds a topically-weighted tree based on the
definition and frequencies of the word, and lastly, merges all trees together into a common graph,
enhancing the scores of the words common across multiple trees. Its output is the sorted N high-
est scoring words from the common graph along with their weights. These N words can either
come directly from text or may be generalizations or related words from the dictionary. Our goal
in using Semantic Forests was to process each database message and derive its topic list, where
the list itself, rather than all the words in the message, would be used to index the data.

 The final stage for database-building is for an index to be built on these topic lists. Our
method for doing the indexing is perhaps fairly standard. Essentially, for each unique word
encountered in any topic list, there is a linked list associated. The linked list contains the mes-
sage numbers, topical scores, ranks, and indicator flags for each message having that word in its
topical listing. For clarity sake, it may be useful to mention that a word X has a different score
and rank for each message in which it appears. To reduce the amount of seek time, each node of
the linked list actually stores the information for up to four messages. This, then, completes the
steps of database construction.

The methods for building both our Ad Hoc and SDR submissions followed this same struc-
ture, as shown in Fig. 1. Description of how we used the database to do queries will be discussed
in Section V of this paper.

III. SEMANTIC FOREST DETAILS

Having given a general overview of our system, it may be valuable to give a more detailed view of
Semantic Forests. As mentioned before, each word in a document is identified in a large recur-
sively-closed electronic dictionary. Each of these input words may be thought of as the root
node of a tree. This root node is assigned a value based upon the word’s message frequency
(fword), a part of speech score (βword), its frequency in a large corpus (Fword), a confidence mea-
sure of its correctness (Kword) and a frequency at the 50%-area mark (Fmax) of the large corpus’
cumulative word frequency distribution. Supposing the frequency of words were sorted from
lowest to highest, the cumulative word frequency of the ith word in the sorted list is the sum of the
frequencies of all words of indices less than or equal to i. If a salience score for each word is
given by the near-smooth function,

SGML
Filter

Convert
Numbers

Join
Multiwords

Semantic Forests Messages
Indexed By
 topic

Fig. 1: Overall Processing Methodology

3

, (1)

where ε and T are arbitrary values, representing the desired salience of a zero-frequency word
and a reliability threshold frequency, then the overall score used for weighting each input word is

. (2)
For the Ad Hoc task, Kword was set to one for every word. On the other hand, for the SDR

task, the word error rate (WER) was estimated at 30%, so Kword was estimated by the formula

.

If an input word could not be located in the dictionary, however, rather than using ε as its
salience, we pretended the word had a training frequency T. If the word was capitalized, it was
assumed to be a proper noun, and otherwise it was assumed to have βword of zero unless fword was

greater than one (in which case, βword was set to be the score for nouns).
The “large corpus” of preference to be used for identifying training frequencies would have

been the whole Ad Hoc database set. Due to time constraints, though, we were forced to use and
hand-tune only the frequencies from the SDR training corpus in addition to data from some inter-
net discussion groups. It is unknown what adverse effect this may have on system performance,
but our speculation is that this caused some slight degradation.

The next step of Semantic Forests is that the words that define each input word are considered
to be its children, and they receive as their score a fraction of their parent’s value, based again on
their individual parts of speech and large-corpus frequency, as well as on a propagation attenua-
tion coefficient (W), their dictionary frequency (d), and the dictionary equivalent of an Fmax,
namely dmax. In particular, the fraction of weight that the jth child of the ith word receives is

, (3)

where D is a dictionary salience given by

. (4)

This means that the score for the ith child word of parent word j is

 score(child word i) = fraction(i,j) * score(parent word j). (5)

S word()

ε
Fword

T

Fmax

T
-------------⎝ ⎠

⎛ ⎞log ε–⎝ ⎠
⎛ ⎞+

Fmax T⁄()log

Fword T≤

T Fword T
2≤<

Fmax Fword T
2

– T+()⁄()log

0

T
2

Fword Fmax≤<

Fmax Fword<
⎩
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎧

=

score rootWord() Kword β wordSword()
f word

=

Kword 1 0.3()
f word

–=

fraction i j,() WD j Dk
child i()∀ k=

∑⎝ ⎠
⎛ ⎞⁄=

D j β j S j dmax d j⁄()log()
1
2

=

4

This tree could continue to grow by augmenting the children of children and their correspond-
ing scores, etc., but this augmentation was not done for either TREC task. (For additional details,
see [1].) As can be seen, though, each word of the message is given a corresponding semantic tree
structure, where the input word is the root of that tree.

The last topical step, then, is to merge all of these semantic trees into a common graph and
give each word j a score OS(j) as a function of its graph connections. This is illustrated in Fig. 2.
As this is done, words that occur in multiple trees are strongly enhanced and are likely to be topic
words or words related to the topic. Let the topical score of word j for tree i be denoted by TS(i,j).
Since word j may occur multiple times in a tree, we add the score for each occurrence to get

TS(i,j). Let SUM(j,q) be the sum over i of (TS(i,j))q. Then the overall score for word j is given by:

, (6)

where the φ values come from complicated, ad hoc functions based on nth-order moments and
maximal TS values for j. Letting n(j) represent the number of trees where the TS value for j is non-
zero, and letting max(j) be the largest of these values, then φ can be given as

, (7)

where p is the maximum number of moments used

Fig. 2: Final weighted graph derived from merging a particular Semantic Forest.

OS j() D j

1
2
--- φ j 1,() φ j 2,()+() 1–

SUM j 1,()⋅=

φ j p,() n j() 1 1–()p
+

2
------------------- 1

max j()
------------------– 1–()q SUM j q,()

SUM j q 1–,()

q 1=

p
∑

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

KING PRESIDENT PRIME_MINISTER EMPEROR

REIGN KINGDOM GUIDE HEAD GUIDANCE CONTROL NATION

 LEADER POLITICAL CHIEF_of_STATE SOVEREIGN POLITICS

MONARCH EXECUTIVE OFFICER PRESIDE CHIEF RULER EMPIRE

(4.67) (3.07) (7.55) (7.55)

(.0061) (.0025) (.275) (.0015) (.452) (.014) (.617)

(.0005) (.0005) (.0003) (.1203) (.0008) (.0000) (.0055)

(1.63) (.0781) (6.93) (.649) (.726)

5

After the common graph is created, the elements of the tree with the largest values can be
selected as topics or words that are topically related. However, some pruning of the tree may be
desirable.

The type of pruning we used was this: if a word of the graph is not an input word and if n(j) is
one, then the word is pruned from the tree. Other types of prunings are possible, but this is the
only one performed for TREC purposes. After pruning, the N largest values are selected as topical
representatives for the particular document, and are stored with their scores and their rank
amongst the N. As is evident, this implies that words may be used in the topic descriptor even
though they were not in the original document, so an indicator flag is also stored to indicate if the
word was an input word or not.

A comment should be made here about implementation and memory requirements. For the
sake of speed as well as memory, the results of forming a common graph were implemented as
arrays of words as opposed to large sets of trees. Thus, some of the nice features about trees and
graphs are lost, but most of the topical scoring ability is still retained. An example of the contents
of a final array (in sorted order) is illustrated in Fig 3. For processing a single document (or
query), the equivalent of eight floating point arrays the size of the dictionary (about 38K words for
this task) need to be retained in addition to the dictionary itself, as well as information about any
new words. This means there is a fairly low RAM overhead (about 4-7 Mbytes). On the other
hand, considerable disk space is required to store the Semantic Forests output in uncompressed
text form for the whole collection. For the Ad Hoc task, the required storage space was 2.38
Gbytes and for the SDR task it was 4 Mbytes. The indexing on the topical outputs from each mes-
sage took much less storage. For the Ad Hoc task, the indices required 473 Mbytes to store; but
for the SDR task, the size was only 3 Mbytes.

Fig.3 Final, sorted topic array

EMPEROR 7.547
PRIME_MINISTER 7.547
CHIEF_of_STATE 6.926
KING 4.675
PRESIDENT 3.071
LEADER 1.634
POLITICS 0.726
SOVEREIGN 0.649
EMPIRE 0.617
CHIEF 0.452
OFFICER 0.275
PRINCIPAL 0.147
ENFORCEMENT 0.142
HEAD 0.120
POLITICAL 0.078
AFFAIR 0.062

6

IV. TIMINGS on TRAINING

With the system structure built, the next objective was to begin processing the database messages.
This was a very time-consuming procedure. The filters and pre-processing stages of this task
were implemented in Perl scripts, making them easy to write but incredibly slow. Semantic For-
ests and the indexer, on the other hand, were C code optimized with a -O2 option on SunOS5.
Unfortunately, since our processing on the Ad Hoc data was done in the week of submission, we
inadvertently failed to capture the actual CPU timings for the processing. However, we do have
approximate serial wall-clock timings which we believe are similar or on the high side of the
actual processing time. For the pre-processing and topic-labelling stages of the Ad Hoc task,
Table 1 on the next page gives these timings for the full 1997 Ad Hoc database material. The
wall-clock time for indexing the topic lists was a much faster process, taking 209 minutes. Based
on this fact and on the entries in Table 1, the total time for processing was approximately 85.6
hours. For the SDR task, we had two extra weeks to prepare, so we did retain actual system tim-
ings for processing. Table 2 gives the timings required for processing the smaller SDR task.

Of course, of interest is the actual platform(s) being used for processing. The two machines
used for the Ad Hoc processing were a Sun Enterprise 5000 (250 MHz, 8 heads, and 1040 MB of
RAM), which is listed in the table as machine type 1, and a SunSparc 20 (100 MHz, 2 heads, and
512 MB of RAM). Only machine type 1 was required for the smaller SDR task.

Table 1: Approximate Wall-clock Time for Topic Labelling on Ad Hoc Task

DOC
TYPE

messages
Machine

Type

Pre-proc
&Topic

Labelling

CR-E 11,358 1 141 min.

CR-H1 7,425 1 96 min

CR-H2 9,139 1 112 min

FBIS1 61,578 1 417 min

FBIS2 26,438 1 174 min

FBIS3 42,455 2 735 min

FR1 26,843 1 201 min

FR2 28,787 1 302 min

FT1 76,857 1 683 min

FT2 133,301 1 897 min

LA1 43,803 1 361 min

LA2 54,603 1 495 min

LA3 34,210 1 311 min

7

V. PERFORMING QUERIES

The next issue is to address the querying process itself as well as the scoring metrics that corre-
spond to querying. All of the query processing was done automatically with no human interven-
tion. For a given query, a query information extractor was first applied to the raw input which
does the equivalent of what the SGML filter did before, while also using a number of regular
expression searches to eliminate common non-topic phrases such as “a required document would
have,” as seen in the queries of previous years. Afterward, the number conversion, the multiword
processing, and Semantic Forests are applied to each of the queries in the file. Thus, for each
query, a topic listing is created, almost exactly as had been done for the database messages.

The goal is to determine how correlated the query topics are with each message in the data-
base. Actual implementation of our querying scheme looks up each single token that was output
of the query topic list and then finds all messages where that token was in the topic list as well.
“Token,” in this instance may either be a single word or a multiword unit. After each token is pro-
cessed from the query topic list, though, it is as if two vectors have been correlated (namely, the
vector of topics from a particular database message and the query topic list). Rather than describ-
ing what happens with each token, we will simply show how the two vectors might correlate or
agree. Our score is given by

. (8)

The variable hit indicates a topic token agreement between the database message topic list and
that of the query, and hits, then is just the number of these agreements over M-long topic lists (M
is less than or equal to N). An agreement between a multiword unit should in general be worth
more than single-word agreements, so the value mw is introduced. The value mw is set to 1 if the
token in agreement is a single word, and otherwise it is the number of words in a multiword unit.
Likewise, if the token in agreement is rare in terms of the number of topic lists it appears in, it
should have more weight than a more frequent word. Thus, idf is introduced, which is simply the
inverse document frequency of a word as applied to the topic lists. The function F is user-speci-
fied, as are the parameters pi. F takes into consideration the topic ranks and the topic scores from
the agreement, and is the key component of the agreement score. The variables mt and qt, repre-
sent the topic score of the particular token in the data message and in the query, respectively; like-
wise, mr and qr represent message and query ranks.

Table 2: System Timing for Full Training on SDR Task

TASK
Machine

Type

 Pre-proc &
Topic

Labelling
 Indexing

LTT data 1 447.89 sec 11.97 sec

SRT data 1 467.55 sec 14.20 sec

agreement hits()p1
mw

p2
idf

p3
F mt qt mr qr, , ,()⋅⋅

hit∀
∑⎝ ⎠

⎛ ⎞=

8

 The values mt and qt, when output from the topic algorithm, are L2-normalized. The rationale
for this normalization was that we might want to later take a product between two topic lists and
make the inner product of a list with itself be equal to one. With this notion in mind, then, the
experimentation we did to develop the F function basically limited its structure to be

, (9)

where ⊗ indicates some simple commutative function such as sum or multiply, “warp” indicates
some non-linear function, and H is a type of correlation function. It seemed useful to turn rank
scores into alternative types of topic scores. This can be achieved by normalizing the reverse ranks
(counting backwards from M); that is, if a rank is y, the normalized reverse rank would be

 y’=(M+1-y)/BT. (10)

The normalizing value BT is simply the square root of the sum of squares over the integers rang-
ing from 1 to M. Thus, if we force the ranks to behave similar to the actual topic scores, the func-
tion H can be rewritten

. (11)

The actual final formulas and other experimentation that were performed will be explained in the
next section. Table 3 shows the time it took to perform retrieval for both the Ad Hoc and the SDR
tasks. It includes forming the topic lists for the queries and performing the score calculations.
For the conditions under which we ran, wall-clock time is assumed to have been only slightly
greater than CPU time.

VI. EXPERIMENTATION

For our system, one of the primary ‘experiments’ was to get it to give reasonable answers. An
initial system prototype applied to the SDR task suggested that our methodology had some poten-

Table 3: Query Time for Topics 301-350 and Topics SDR1-SDR50

TASK
Machine

Type
Time

 Timing
Method

Ad Hoc: Description Only 1 11 min wall clock

Ad Hoc: All topic info 1 26 min wall clock

LTT: All topic info 1 8.41 sec CPU clock

SRT: All topic info 1 8.66 sec CPU clock

F mt qt mr qr, , ,() warp mt qt⋅()p4
H mr qr,()⊗()=

H mr qr,() mr′ qr′⋅()p5
=

9

tial, so construction of the full indexing-querying software was begun. We experimented with our
system by using the query set from 1996 and querying against only those parts of this year’s data
that were also available in 1996l. All of our runs were completely automatic, so we were able to
make many experiments. We compared our results against the TREC5 short and long automatic
columns listed in Table 1 of Karen Sparck Jones’ “Summary Performance Comparisons TREC-2,
TREC-3, TREC-4, and TREC-5,” noting that 25% was the lowest average precision listed for
retrieval of 30 documents. As we practiced this Ad Hoc task, we were able to move our average
precision on the top 30 documents retrieved on long automatic queries from a mere 4% at the
onset to 19% at the end of experimentation. Likewise, in the SDR task, using the six sample que-
ries, our initial protoype had an average rank of 45 and inverse of the average inverse rank of 1.5,
both of which we were able to bring down substantially, getting scores as low as 4.7 and 1.37
respectively. This was done using a set of queries which included the six supplied by NIST and
an additional 40 of our own queries. Thus, in this experimental phase, we learned many useful
things that will also be commented upon here.

INITIAL COMMENTS

Three comments are in order at the onset. The original application of Semantic Forests, as noted
previously, was to automatically label the topic of a document. This, though, is not the case for
queries. When a person makes a query, he or she may not necessarily want to retrieve something
whose topic matches the query. Having looked at the messages marked by NIST as relevant
against some of last year’s queries, we noted that some documents were so marked even if they
only made passing reference to the query word or phrase. These instances would be clear losses
to us since the fact of a word being in a document would not necessarily guarantee that the word
would also be topical.

The second comment is that as we proceeded to do our experiments for the Ad Hoc experi-
ments, we recognized that our software had two programming bugs. When these bugs were cor-
rected, we observed a boost in our overall average precision on the top 30 (APRT30) documents
by an absolute 7.5%.

Thirdly, since we were only using a subset of the total 1996 data as we performed our experi-
ments, we expected we would be losing a few percentage points due to the fact that some of last
year’s queries only had documents that appeared in early databases, meaning we would automati-
cally lose in those situations. Our expectation was that whatever our final APRT30, we could
probably improve performance by 2-3% based on the fact that we would have the full 1997 data
set. Also, since our output would actually be evaluated, we thought this might contribute an addi-
tional 1-2%.

EXPERIMENTS PERFORMED

All the experimentation that was performed for the Ad Hoc task involved either specifying the
functions and parameters mentioned in section IV, or limiting or expanding the number of non-
input synonym words that are generated by Semantic Forest for either the database document or
the query. Our SDR experimentation also involved trying to find common errors and omissions
made in the recognizer output and supplementing our electronic dictionary to take these variations
into account.

10

Synonymy:
 A common recurring theme in past TREC’s is how to supplement a query with synonyms in
such a way that there is a performance boost. The idea of producing conceptually similar words is
something quite natural for Semantic Forests. We expected that this innate quality would be a big
boon for our system. Unfortunately, Semantic Forests reports terms as found in its dictionary
which, though conceptually similar, are not always synonymous. Likewise, Semantic Forest does
not yet report which sense of the word is desirable. Both of these factors made it difficult to use
synonyms. The general finding when using the out-of-the-box synonyms were that the messages
that were already fairly well correlated suddenly had gigantic scores; but weakly correlated mes-
sages were not enhanced and were generally retrieved lower in the queue since other documents
might have more synonyms. An example of both of these cases might be made from the SDR
sample 6 queries. Before synonyms were added, our best query had an agreement score of 98 and
a rank of 1, while our worst had a score of 0.58 and a rank of 63. After the synonyms were added,
the first now had a score of 500K and the rank did not change; but the worst had a slight drop in
score of 0.367 (due to the fact that synonyms can possibly rank higher than input words), and,
more importantly, its rank had dropped to 127. Thus, for this TREC, we limited our synonyms to
two other types.

The first was to use subcomponents of multiword units. In this instance, if a query has a mul-
tiword unit that agrees with one of the messages, there is a hit not only on the word itself but on
the salient subcomponents as well. On the other hand, a database message may not have the par-
ticular multiword being sought but may have the component words. For the Ad Hoc query, we did
not use this, though it was incorporated into the SDR experiments and resulted in dropping the
inverse of the average inverse rank on our 45-query set from 1.45 to 1.37 and average rank from
5.83 to 5.58 at the particular time it was first added.

The second type of synonym has to do with adjectival nouns that reference a country. For
example, “French” implies “France” and “Israeli” implies “Israel.” Therefore, if an adjectival
noun existed in a document and if it had in its definition a country name with the first two charac-
ters the same, the country name was added to the document and processed as if it had actually
been a member of the text. For the Ad Hoc experiment, we used this type of synonymy on both
the database documents as well as on the queries, and we experienced a positive effect. On the
version of the system used to conduct the experiment, the APRT30 increased (on the full topic)
from 17.5% to 19.0%. On the SDR task, this same synonymy was applied to both the query and
document and to the query alone. There was a decrease in average rank when the synonymy was
limited to only the query.

Parameter Modifications
For both the Ad Hoc and the SDR tasks, determining the best user-specified parameters and

functions was difficult, but fairly useful. For the Ad Hoc task, the parameter modifications did
results in slight improvements. We basically let p2=0, p1=p3=p4=p5=1, warp=√x, and ⊗ = multi-
ply in equations (8), (9) and (11). We started with M=250 and tried to reduce this, but this change
decreased the precision. The biggest improvements for the Ad Hoc came in limiting the allowable
ranks. We got a 0.8% absolute improvement in APRT30 when we set qr′to zero when qr>75 (i.e.,
weeding out lesser important query topics). Also, when a hit occurred such that mr >6, it was
counted as only 1/4 in the hits parameter. This gave an absolute 1.2%.

11

However, for the SDR task, these parameters made much larger differences. In particular and
of prime interest is the fact that we eventually ended up deciding that the topic score was of no
importance when compared with the rank, and it was completely eliminated. For the final system,
we settled on letting p1=3, p2=2, p3=1.5, p4=0, and p5=1; ⊗ remained a simple multiply, but

warp(x) was changed to (0.85)x and H, as previously defined in Equation (11), was modified to
become

. (12)

Common Recognizer Errors
As was mentioned before, we were particularly interested in the SDR track of TREC97. Our

hope was that Semantic Forests could potentially knit together the true topics of errorful transcrip-
tions, but we also hoped to be able to supplement that effort by locating commonly misrecognized
words and putting into the dictionary the misrecognition. In particular, we wanted to supplement
the dictionary with words that are high frequency in the LTT training files, but non-existent in the
SRT. After analyzing the training data, we realized that there were not many instances of this
kind of phenomenon, but the words that were missing from recognition were usually critical. In
particular, “Netanyahu,” “Valujet”, “Freemen,” and “Admiral Boorda” are very topical words that
appeared in many instances across the LTT files, but never occurred in the SRT. Common misrec-
ognitions of “Valujet,” for example, were the phrases “value jet” and “valued jet;” “Netanyahu”
often was recognized with the word “neon” in it, such as “neon who;” “Freeman” almost always
appeared as two separate words; and “Boorda” often appeared as “border” or something similar.
As an experiment, we wrote some practice queries that only involved these phrases and compared
our algorithm’s output to that of another retrieval system. As one might expect, our performance
was far better. Unfortunately, after we had submitted our actual evaluation of SDR, we found that
none of these words were in the SDR queries. On the other hand, the word “Unabomber” did
appear in the queries and we were prepared.

VII. OTHER INTERESTING OBSERVATIONS

It is interesting and useful to make note of a few other observations that can be made about
this approach. These areas are things that are inherent in the algorithm but may be considered
experimental in their own right. These are the areas of stemming, use of numbers, and boolean
logic.

Stemming
In the past, different groups have experimented with different kinds of stemming, such as

using the first k characters or using some more sophisticated method. For Semantic Forests, stem-
ming is automatic. If a word in the text document is also in the electronic dictionary, then the
word is considered to already be stemmed. There are instances when this consideration is wrong,
where, for example, what might be a conjugation of a verb might also have another meaning, and
therefore the conjugation may also be stored in the dictionary. Yet these cases are infrequent. On
the other hand, if a word is not found in the dictionary, then procedures are applied to see if it is a
different word form of one of the words already in the dictionary. If the word is still not found, it
is assumed to be a new word.

H mr qr,() mr qr+()p5
=

12

However, words that are considered to be new result in a great difficulty that does not exist in
other stemmers. Suppose, for example, that a words “cryogenically” and “cryogenics” appear in
training data but are not words that existed in Semantic Forests’ dictionary (nor their stems). If a
query is made about “cryogenics,” only messages with that exact word will be identified. We did
not realize the full extent of this problem until the SDR evaluation, where for some reason, the
word “programmers” was not known to Semantic Forests. It therefore stored the whole word and
missed any related or partial words, causing our recognition of that message to be abysmal.

Numbers
As was mentioned before, a number conversion routine is one of the early precursors to

Semantic Forests. Semantic Forests knows what numbers are, and in fact, it can interpret years to
a certain extent, even knowing some major events of those years. In the 1996 evaluation, one of
the queries had asked to find some event “since 1950.” Semantic Forests knows both words, but it
does not understand the pairwise construct. It has not yet learned to interpret “since <date>” as
“greater than or equal <date>.” We did not have time to put this into Semantic Forests, so we
made an attempt to fake it in the SGML filter. The phrase “since <date>” was converted to the
string “<date>,..., 1996, 1997,” i.e., “since 1950” became “1950, 1951,..., 1997.” Semantic Forests
reported that dates and numbers were the key topics. This clearly was an incorrect interpretation.
As a result, for the final system, we decided to leave out any special numerical processing other
than what was already in the system.

Boolean Logic
Similarly, boolean logic is something that is not yet interpreted by Semantic Forests, so the

“not” logic adversely effects performance of the retrieval system. To partially remedy this, the
SGML filter was told that if it saw “word1 not word2,” that it should just eliminate word2 alto-
gether. Other rudimentary facilities were added to this script which enhanced our whole query
routine’s ability to find documents...at least in training. Yet the other boolean constructs were
basically unregarded, which could have caused negative effects on processing.

VIII. FUTURE WORK

There were a number of areas that we would like to explore but did not have the time prior to
evaluation to properly pursue. Other ideas did have some initial attempts made, but though the
ideas may eventually provide great benefits, these first attempts were unfruitful. In particular,
then, the areas we would like to work on in the future would be:

[1] Take full advantage of the synonym property of Semantic Forests. A place where this
would be of particular utility is when a query is performed and there is a particular word in
the query that has no messages containing it. This would have been a sure win on the SDR
task, since this potentially helps reduce the number of catastrophic failures that might
arise;

[2] Apply on an Ad Hoc task the multiword decomposition, and use the adjectival nouns only
on the queries themselves, where both of these resulted in improvements on the SDR task;

[3] Insert number parsing and boolean logic directly into Semantic Forests; and lastly
[4] Perform a second pass search which looks at the actual words of the document after the

topic routine is used to reduce the search set.

13

IX. REFERENCES

Allan, J., Callan, J., Croft, B., Ballesteros, L., Broglio, J., Xu, J., Shu, H., “Inquery at TREC-5,”
Center for Intelligent Information Retrieval, Dept. of Computer Science, University of Mas-
sachusetts, Amherst, Mass.

Jones, Karen Sparck, “Summary Performance Comparisons TREC-2, TREC-3, TREC-4, TREC-
5”, Computer Laboratory, University of Cambridge, 10 Feb 1997.

Schone, P., Nelson, D., “A Dictionary-Based Method for Determining Topics in Text and Tran-
scribed speech,” 1996 IEEE International Conference on Acoustics, Speech, & Signals Pro-
cessing, Atlanta, Georgia, May, 1996; Vol. 1, pp. 295-298.

